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Abstract
Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven
by modern applications in genetics and brain sciences, accurate and efficient learning of large-
scale BN structures from high-dimensional data becomes a challenging problem. To tackle this
challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that
employs a novel formulation involving one L1-norm penalty term to impose sparsity and another
penalty term to ensure that the learned BN is a Directed Acyclic Graph (DAG)—a required
property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and
large benchmark networks with various sample sizes, we show that SBN leads to improved
learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning
algorithms. We apply SBN to a real-world application of brain connectivity modeling for
Alzheimer’s disease (AD) and reveal findings that could lead to advancements in AD research.
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1 INTRODUCTION
A Bayesian network (BN) is a graphical model for representing the probabilistic
relationships among variables. BNs have been widely used in the fields of genetics [1], [2],
ecology [3], [4], social sciences [5], medical sciences [6], brain sciences [7], [8], and
manufacturing [9]. A BN consists of two components: the structure, which is a Directed
Acyclic Graph (DAG), for representing the dependency and independency among variables,
and a set of parameters for representing the quantitative information of the dependency.
Accordingly, learning a BN from data includes structure learning and parameter learning.
This paper focuses on structure learning.

One type of structure learning method is constraint based. Constraint-based methods [10],
[11], [12], [13], [14] use conditional independence tests to identify the dependent and
independent relationships among variables. A major weakness of these methods is that too
many tests may have to be performed, with each test being built upon the results of another,
leading to escalated errors in the BN structure identification.

Another type of structure learning method is score based, in which a “score” is defined for
each possible BN structure and then a search algorithm is used to find the structure with the
highest score. Various score functions have been proposed, including those based on the
Bayesian method [15], [16], [17], [18], [19], minimum description length [20], [21], [22],
[23], and entropy [10], [24]. Furthermore, once a score function is specified, a search
method is needed to find the structure with the highest score. Because the number of
possible structures grows exponentially with respect to the number of variables, an
exhaustive search over all possible structures may be computationally too expensive or
unfeasible. Therefore, various inexact search methods have been proposed, such as heuristic
search techniques [15], [24], [25], [26], genetic algorithms [28], [29], and simulated
annealing [30]. Sampling methods such as Markov Chain Monte Carlo (MCMC) [18], [24]
have also been utilized to travel through the DAG space. These methods usually find a BN
structure that is a local optimum, and have been less effective in high-dimensional DAG
spaces. In addition, some work has been done to combine score-based methods with
constraint-based methods [31]. Then there is the recently developed novel additive noise
model [32], which differs from both constraint-based and score-based methods and has the
advantage of learning nonlinear interactions for non-Gaussian BNs.1

Driven by modern applications in brain sciences and genetics, there has been a great need of
algorithms capable of learning large BN structures with high accuracy and efficiency from
limited samples. For example, BNs provide an effective tool for identifying how different
brain regions interact with each other in task performance, skill learning, and disease
processes from neuroimaging data [7], [8]. A typical neuroimaging dataset includes
hundreds of variables (brain regions), while the sample size (number of experimental
subjects) is usually in tens. Also, BNs are very useful for modeling the interacting patterns
between genes from microarray gene expression data, which measures thousands of genes
with sample size being no more than a few hundred [1], [2].

For the purpose of learning a large BN with small sample sizes, a useful strategy is to
impose a “sparsity” constraint of some kind. Many real-world networks are indeed sparse,
such as the gene association networks [1], [33] and brain connectivity networks [34]. When
learning the structure of these networks, a sparsity constraint helps prevent over-fitting and

1Data used in preparation of this paper were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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improves computational efficiency. For example, the Sparse Candidate (SC) algorithm [35],
one of the first large-scale BN structure learning algorithms, achieves sparsity by assuming
that the maximum number of parents for each node is limited to a small constant. One major
problem with SC is that the user has to guess the maximum number of parents. Also, it is
usually unrealistic to assume that all the nodes have the same maximum number of parents.
The L1MB-DAG algorithm [36] does not require a prior specification on the maximum
number of parents. Instead, it uses LASSO to select a small set of potential parents for each
variable. LASSO is known for sparse variable selection [37].

In addition to the sparsity consideration, recently developed BN structure learning methods
usually consist of two stages: Stage 1 is to identify the potential parents of each variable;
Stage 2 applies some search methods to identify the parents out of the potential parent set.
The advantage of the two-stage approach is improved efficiency, as Stage 2 is a local search
over a possibly small set of potential parents for each variable identified by Stage 1, rather
than a global search over all the variables. The two-stage approach has been popularly
adopted by many existing algorithms, including the SC and the L1MB-DAG algorithms,
mentioned previously, as well as the Hill-Climbing (MMHC) [38], the Grow-Shrink [39],
the TC, and the TC-bw [40] algorithms. The difference between these algorithms primarily
lies in how they identify the potential parent set in Stage 1. For example, L1MB-DAG uses
LASSO, MMHC uses the G2 statistic, and TC and TC-bw use a t-test. An apparent
weakness of the two-stage approach is that if a true parent is missed in Stage 1, it will never
be recovered in Stage 2. Another weakness of the existing algorithms is that the
computational efficiency is still too low for learning large BNs. For example, it may take
hours or days to learn a BN with 500 nodes.

In this paper, we propose a new sparse Gaussian BN structure learning algorithm called
Sparse Bayesian Network (SBN). It is a one-stage approach that identifies the parents of all
variables directly, thus having a low risk of missing parents (i.e., a high accuracy in BN
structure identification) compared with many existing algorithms that employ the two-stage
approach. Specifically, in development of the SBN, we propose a novel formulation with
one L1-norm penalty term to impose sparsity and another penalty term to ensure that the
learned BN is a Directed Acyclic Graph—a required property of BN. The theoretical
property about how to select the regularization parameter associated with the second penalty
term is discussed. Under this formulation, we propose to use the Block Coordinate Descent
(BCD) and shooting algorithms to estimate the BN structure. Further, our theoretical
analysis indicates that the computational complexity of SBN is linear in the sample size and
quadratic in the number of variables. This characteristic makes SBN more scalable and
efficient than most existing algorithms, and thus well suited for large-scale BN structure
learning from high-dimensional datasets.

In addition, we perform theoretical analysis to show why the two-stage approach popularly
adopted in the existing literature has a high risk of misidentifying the true parents and how
the proposed SBN overcomes this deficiency. Also, extensive experiments on synthetic data
are performed to compare SBN and the existing algorithms in terms of the learning
accuracy, scalability, and efficiency. Finally, we apply SBN to a real-world application of
brain connectivity modeling for Alzheimer’s disease (AD). In particular, SBN is applied to
the neuroimaging PDG-PET data of 42 AD patients and 67 matching normal control (NC)
subjects in order to identify the brain connectivity model for each of the two study groups. A
connectivity model represented by a BN reveals the directional effects of one brain region
over another—called the effective connectivity. Effective connectivity has been much less
studied in the AD literature, as most existing work focuses on functional connectivity, i.e.,
the correlations among brain regions. In this sense, the application of SBN to AD has the
advantage over undirected graphical models of providing new insights into the mechanisms/
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pathways that distinct brain regions communicate with each other. In this application, the
effective connectivity model of AD identified by SBN is compared in many different ways
with that of NC, including the connectivity at the global scale, intra/interlobe and inter-
hemisphere connectivity distribution, and the connectivity associated with specific brain
regions. The findings are consistent with known pathology and the clinical progression in
AD.

The rest of the paper is organized as follows: Section 2 introduces the key definitions and
concepts of BN. Section 3 presents the development of SBN. Section 4 performs a
theoretical analysis on the competitive advantage of SBN over the existing algorithms that
employ the two-stage approach. Section 5 presents the results of the experiments on
synthetic data. Section 6 presents the application of SBN to brain connectivity modeling of
AD. Section 7 is the conclusion.

2 Bayesian Network: Key Definitions and Concepts
In this section, we give a brief introduction to the key definitions and concepts of BNs:

A BN is composed by a structure and a set of parameters. The structure (Fig. 1) is a DAG
that consists of p nodes [X1,…, Xp] and directed arcs between some nodes; no cycle is
allowed in a DAG. Each node represents a random variable. In this paper, we will use nodes
and variables interchangeably. The directed arcs encode the dependent and independent
relationships among the variables. If there is a directed arc from Xi to Xj, Xi is called a
parent of Xj and Xj is called a child of Xi. Two nodes are called spouses of each other if they
share a common child. If there is a directed path from Xi to Xj, i.e., Xi → ⋯ → Xj, Xi is
called an ancestor of Xj. A directed arc is also a directed path and a parent is also an
ancestor according to this definition. The Markov Blanket (MB) of Xj is a set of variables
and, given this set of variables, Xj will be independent of all other variables. The MB
consists of the parents, children, and spouses of Xj.

In this paper, we will adopt the following notations with respect to a BN structure: We
denote the structure by a p × p matrix G, with entry Gij = 1 representing a directed arc from
Xi to Xj and Gij = 0, otherwise. The set of parents of a node Xi is denoted by PA(Xi). In
addition, we define a p × p matrix, P, which records all the directed paths in the structure,
i.e., if there is a directed path from Xi to Xj, entry Pij = 1; otherwise, Pij = 0.

In addition to the structure, another important component of a BN is the parameters. The
parameters are the conditional probability distribution of each node given its parents.
Specifically, when the nodes follow a multivariate normal distribution, a regression-type

parameterization can be adopted, i.e.,  with  and βi being a
vector of regression coefficients. Without loss of generality, we assume in this paper that the
nodes are standardized, i.e., each with a zero mean and unit variance. Then, the parameters
of a BN are B = [β1,…, βp].

3 The Proposed Sparse BN Structure Learning Algorithm—SBN
One of the challenging issues in BN structure learning is to ensure that the learned structure
must be a DAG, i.e., no cycle is present. To achieve this, we first identify a sufficient and
necessary condition for a DAG

Lemma 1
A sufficient and necessary condition for a DAG is βji × Pij = 0 for every pair of nodes Xi and
Xj.

Huang et al. Page 4

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Proof
To prove the necessary condition, suppose that a BN structure, G, is a DAG. Let’s assume
that βji × Pij ≠ 0 for a pair of nodes Xi and Xj. Then, there exists a directed path from Xj to Xi
and a directed path from Xi to Xj, i.e., there is a cycle in G which is a contradiction to our
presumption that G is a DAG. To prove the sufficient condition, suppose that βji × Pij = 0
for every pair of nodes Xi and Xj. If G is not a DAG, i.e., there is a cycle, it means that there
exist two variables, Xi and Xj, with a directed arc from Xj to Xi (βji ≠ 0) and a directed path
from Xi to Xj (Pij = 1). This is a contradiction to our presumption that βji × Pij = 0 for every
pair of nodes Xi and Xj.

Based on Lemma 1, we further present our formulation for sparse BN structure learning. It is
an optimization problem with the objective function and constraints given by

(1)

According to the definition of P, P is a function of B. So the constraints in (1) are functions
of B. The notations in (1) are explained as follows: xi = [xi1,…, xin] denote the sample vector
for Xi, where n is the sample size. x/i denotes the sample matrix for all the variables except

Xi. The first term in the objective function, , is a
profile likelihood to measure the model fit. In the second term, ∥βi∥

1 is the sum of the
absolute values of the elements in βi and thus is the so-called L1-norm penalty [37]. The
regularization parameter, λ1, controls the number of nonzero elements in the solution to βi,

; the larger the λ1, the fewer nonzero elements in . Because fewer nonzero elements in 
correspond to fewer arcs in the learned BN structure, a larger λ1 results in a sparser
structure. In addition, the constraints are to assure that the learned BN is a DAG (see Lemma
1 and Theorem 1 below).

Solving the constrained optimization in (1) is difficult. Therefore, the penalty method [42] is
employed to transform it into an unconstrained optimization problem, through adding an
extra L1-norm penalty into the objective function, i.e.,

(2)

where j⋐X/i denotes that the variable indexed by j, i.e.,Xj, is a variable different from Xi.
Here, λ2 ∑j⋐X/i |βji× Pij| is to push βji × Pij to become zero. Under some mild conditions [42],
there exists a  such that for all , is also a minimizer for (1). Later, in Theorem 1,
we will show how to derive a practical estimation for .

Given λ1 and λ2, the BCD algorithm [43] can be employed to solve (2). The BCD algorithm
updates each βi iteratively, assuming that all other parameters are fixed. In our situation, this
is equivalent to optimizing fi(βi) in (3) iteratively and the algorithm will terminate when
some convergence conditions are satisfied. We remark that fi(βi), after some transformation,
is similar to LASSO [37], i.e.,
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(3)

As a result, the shooting algorithm [44] for LASSO may be used to optimize fi(βi) in each
iteration. Note that at each iteration for optimizing fi(βi), we also need to calculate Pij for
j⋐X/i. This can be done by a Breadth-first search on G with Xi being the root node [45]. A
more detailed description of the BCD algorithm and the shooting algorithm used to solve (3)
is given in Figs. 2 and 3, respectively.

Choosing two free parameters, λ1 and λ2, may be a difficult task in practice. Fortunately,
Theorem 1 shows that, with a given λ1, any λ2 > (n – 1)2p/λ1 – λ1 will guarantee the output
the BCD algorithm to be a DAG.

Theorem 1

Any λ2 > (n – 1)2p/λ1 – λ1 will guarantee  to be a DAG.

Proof

To prove this, we first need to prove that, with a certain value of λ1 and any value of λ2, 
is bounded, i.e.,

,

for each . The second inequality holds because  is the value of the left-hand side of

the inequality when βi = 0, which is obviously larger than that when . The last equality
holds because we have standardized all the variables. Thus we know that

. Now, we use proof-by-contradiction to show that, with any λ2
> (n – 1)2p/ λ1 – λ1, we will get a DAG. Suppose that such a λ2 doesn’t guarantee a DAG.
Then, there must be at least a pair of variables Xi and Xj with βji × Pij ≠ 0, which is βji ≠ 0
and Pij = 1, based on the first order optimality condition, βji ≠ 0, i.f.f.

. Here,  denotes the elements in  without 
and x/(i,j) denotes the sample matrix for all the variables except Xi and Xj. However,

resulting in .

Theorem 1 implies that if we specify any λ2 > (n – 1)2p/ λ1 – λ1, we will get a minimizer of
(1) through solving (2). However, in practice, directly solving (2) by specifying a large λ2
may converge slowly. This is because the unconstrained problem in (2) may be ill-
conditioned with a too large value for λ2 [42]. To avoid this situation, the “warm start”
method [42] can be used, which works in the following way: First, it specifies a series of

values for λ2, i.e., , with a small  and ; next,

it optimizes (2) with  to get a minimizer , using an arbitrary initial value; then, it
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optimizes (2) with , using  as an initial value; this process iterates until it

optimizes (2) with . With the last minimizer as the initial value for the next
optimization problem, this method can be quite efficient.

Finally, we want to mention that the L2-norm penalty, λ2 ∑j⋐X/i (βji × Pij)2, might also be
used in (2). The advantage is that it is a differentiable function of βji. Also, as shown in [42],
βji × Pij → 0 when λ2 → ∞. However, the weakness of the L2-norm penalty, compared with
the L1-norm penalty, is that there is no guarantee that a finite λ2 exists to assure βji × Pij = 0
for all pairs of Xi and Xj.

Time complexity analysis
Each iteration of the BCD algorithm consists of two operations: a shooting algorithm and a
Breadth-first search on G. These two operations cost O(pn) [46] and O(p + |G|),
respectively. Here, |G| is the number of nonzero elements in G. If G is sparse, i.e., |G| = Cp
with a small constant C, then O(p + |G|) = O(p). Thus, the computational cost at each
iteration is only O(pn). Furthermore, each sweep through all columns of B costs O(p2n). Our
simulation study shows that it usually takes no more than 5 sweeps to converge.

4 Some Theoretical Analysis on the Competitive Advantage of the
Proposed SBN Algorithm

Simulation studies in Section 5 will show that SBN is more accurate than various existing
algorithms that employ a two-stage approach. This section aims to provide some theoretical
insights about why the existing algorithms are less accurate. Please note that although a
comprehensive analysis of this kind on all types of BNs and all two-stage algorithms is the
most desirable, it is also very challenging, if not impossible, and beyond the scope of this
paper. Therefore, in this section, we focus on some specific types of BNs and one popular
two-stage algorithm, so as to provide some supporting evidence for the proposed SBN in
addition to the results of the simulation studies in Section 5.

Recall that Stage 1 of the two-stage approach is to identify the potential parents of each Xi.
The existing algorithms achieve this goal by identifying the MB of Xi. A typical method is
variable selection based on regressions, i.e., to build a regression of Xi on all other variables
and consider the variables selected to be the MB. One difference between various algorithms
is the type of regression used and the method used for variable selection. For example, the
TC algorithm [40] uses ordinary regression and a t-test for variable selection; the L1MB-
DAG algorithm [36] uses LASSO.

However, in the regression of Xi, not only will the coefficients for the variables not in the
MB be small (theoretically zero due to the definition of MB), the coefficients for the parents
may also be very small due to the correlation between the parents and the children. As a
result, some parents may not be selected in the variable selection, i.e., they will be missed in
Stage 1 of the two-stage approach, leading to greater BN learning errors. In contrast, SBN
may not suffer from this problem because it is a one-stage approach that identifies the
parents directly.

To further illustrate this point, we analyze one two-stage algorithm, the TC algorithm. TC
does variable selection using a t-test. To determine whether a variable should be selected, a

t-test uses the statistic , where  is the least-square estimate for the regression

coefficient of this variable and  is the standard error. The larger the value of 
the higher the chance that the variable will be selected. Theorems 2 and 3 below show that
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even though the value of  corresponding to a parent of Xi is large in the true BN, its
value may decrease drastically in the regression of Xi on all other variables. Theorem 2
focuses on a specific type of BN, a general tree, in which all variables have one common
ancestor and there is at most one directed path between two variables; Theorem 3 focuses on
a general inverse tree, which becomes a general tree if reversing all the arcs. Proof of
Theorem 2 can be found in Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.130. Proof of
Theorem 3 can also be found in the supplemental material available online.

Theorem 2
Consider a general tree with m variables, whose structure and parameters are given by X1 =
e1, X2 = β12X1 + e2, Xi = β2iX2 + ei, i = 3,4, …, m (Fig. 4). All the variables have unit

variance. Let  denote the least-square estimate for β12 in regression X2 = β12X1 + e2. Let

 denote the least-square estimate for  in regression

 (i.e., a regression that regresses X2 on all other
variables in the general tree).Then, the following relations hold:

where  denotes the least-square estimate for a regression coefficient βij and 

denotes the standard error for .

Theorem 3
Consider a general inverse tree with m + l + 2 variables, whose structure and parameters are
given by

(Fig. 5). All the variables have unit variance. Let  denote the least-square estimate for

βk,l+1 in regression , k = 1,2,…,l. Let  denote the least-

square estimate for  in regression

Huang et al. Page 8

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.130


 (i.e., a regression that
regresses Xl+1 on all other variables in the general inverse tree). Then, the following
relations hold:

Here, we use two examples to illustrate the theorems. Consider a general tree with m = 8
(see Fig. 4 to recall the definition for m) and least-square estimates for the parameters being

 and , i = 3, …, 8. Then, using the formula for  in Theorem 2, we can

get . Using the formula for , we can get

. Consider a general inverse tree
with l = 5 and m = 0 (see Fig. 5 to recall definitions for l and m) and least-square estimates

for the parameters being  and .

Then, using the formula for  (i.e., , k = 1, …, 5) in Theorem 3, we can get

Note that the theoretical study in this section focuses on Stage 1 of the two-stage approach.
It would also be interesting to analyze Stage 2, e.g., to find out the relative significance of
the coefficients for variables in the MB and identify under what conditions the true parents
may be missed. We plan to conduct such analysis in the future.

5 Simulation Study on Synthetic Data
We perform five simulations. The first two show that, on a general tree and a general inverse
tree, the existing algorithms based on the two-stage approach may miss some true parents
with a high probability, while SBN performs well. The third simulation is to compare the
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structure learning accuracy of SBN with other competing algorithms using some benchmark
networks. The fourth and fifth simulations are to investigate the scalability and efficiency of
SBN and compare it with other competing algorithms. The code is available at http://
www.public.asu.edu/~shuang31/codes/SBN.rar.

5.1 Learning Accuracy for General Tree
We select 10 existing algorithms in our study: HITON-PC [47], IAMB and three of its
variants [48], GS [39], SC [35], TC and its advanced version TC-bw [40], and L1MB-DAG
[36]. We focus on the general tree shown in Fig. 6a in which the regression coefficient of
each arc is randomly generated from ±Uniform(0.5, 1). We simulate data from this general
tree with a sample size of 200.

We apply the selected existing algorithms on the simulated data; the parameters of each
algorithm are selected in the way that has been suggested in the respective paper.
Specifically, HITON-PC is applied with a significance level of 5 percent used in the G2 test
of statistical independence and degrees of freedom set according to reference 14 cited in the
paper of HITON-PC [47]. IAMB and its variants are applied with the significant level set to
be 5 percent. GS is applied using the default value of 0.05 in its algorithm. SC is applied
using the Bayesian scoring heuristic and the maximum number of parents chosen for the SC
algorithm to be 5 and 10 (the one with better performance is kept and its corresponding
result is presented). TC and TC-bw are applied by setting parameter α = 2/(p(p – 1)) as
suggested and adopted in the paper [40]. There is no free parameter in L1MB-DAG.

In applying the proposed SBN, λ1 is selected by BIC (i.e., a step search is employed to find
the λ1 that produces the minimum BIC value). Following Theorem 1, λ2 is set to be 10[(n –
1)2p/ λ1 – λ1], which empirically guarantees a DAG to be learned. Furthermore, note that the
optimization problem in (2) is nonconvex, so a good initial value for B would be helpful.
We tried various options and found that a good initial value can be the output from Stage 1
of the two-stage approaches (i.e., the potential parent set). Specifically, in our experiments
we set the initial value to be the output from Stage 1 of L1MB, which is a parameter-free
algorithm that can be easily assembled with SBN.

The results averaged over 100 repetitions are shown in Figs. 7a, 7b, and 7c. The X-axis
records the 10 selected algorithms and the proposed SBN (the last one). The Y -axis of each
figure in Figs. 7a, 7b, and 7c is a different performance measure, i.e., the frequency for X1
being identified as a parent of Xi, i = 2, …, 7, in (a), the ratio of the number of correctly
identified arcs in the learned BN to the number of arcs in the true BN in (b), and the ratio of
the total learning error in the learned BN (false positives plus false negatives) to the number
or arcs in the true BN in (c). Note that Fig. 7a focuses on the arcs between X1 and Xi, i = 2,
… 7, in order to demonstrate Theorem 2 (i.e., because the MB of Xi includes not only parent
X1 but also six children, the coefficient of the arc between parent X1 and Xi may be
underestimated so that X1 may not be included in the MB identified in Stage 1 of the
competing algorithms). The observation from Fig. 7a is consistent with this theoretical
explanation, which shows that the competing algorithms do not perform as well as SBN.
Figs. 7b and 7c are performance measures defined on all arcs. They also show SBN’s better
performance.

5.2 Learning Accuracy for General Inverse Tree
We focus on the general inverse tree in Fig. 6b, in which the regression coefficient of each
arc is randomly generated from ±Uniform(0.5, 1). We simulate data from this general with a
sample size of 200.
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We apply the 10 selected existing algorithms and SBN on the simulated data in the same
way as that in Section 5.1. The results of 100 repetitions are shown in Figs. 8a, 8b, 8c, which
can be read in a similar way to Fig. 7. Note that Fig. 8a focuses on the arcs between Xi, i = 1,
…, 30, and their respective children in order to demonstrate Theorem 3. Figs. 8a, 8b, 8c
show that SBN performs better.

5.3 Learning Accuracy for Benchmark Networks
To evaluate the performance of SBN on general (i.e., non-tree-like) BNs, we select seven
moderately large networks from the Bayesian Network Repository (BNR) [49]. None of
these networks are tree-like except for the “Chain” network. These networks are selected
based on the consideration that they provide a range of small-to-moderately-large networks
with the number of nodes ranging from 7 to 61, they are sparse, and they were also used in
[36], which is a competing algorithm of ours. We also use the tiling technique [50] to
produce two large BNs, Alarm2, and Hailfinder2. Two other networks with specific
structures, Factor and Chain [51], are also considered. The numbers of nodes and arcs in
each of the 11 networks are shown in Table 1.

To specify the parameters of a network, i.e., to specify the regression coefficients of each
variable on its parents, we randomly sample from ±Uniform(0.5, 1). Then, we data for each
network with a sample size 1,000, and apply the 10 competing algorithms and SBN to learn
the BN structure. The results over 100 repetitions are shown in Fig. 9a, in which the X-axis
records the 11 networks and the Y -axis records the ratio of the total learning error in the
learned BN (false positives plus false negatives) to the number of arcs in the true BN. This
figure deserves more explanation: We found it hard to show all 10 competing algorithms,
i.e., they become indistinguishable. Thus, for each benchmark network (i.e., a tick on the X-
axis), we only show the three competing algorithms with the best performance. For example,
for network “Carpo” (fourth tick on the X-axis) in Fig. 9a, the top three competing
algorithms shown are GS, TC, and SC. Figs. 9b, 9c, 9d are comparison plots in terms of
other criteria. Specifically, Fig. 9b plots the ratio of the correctly identified arcs in the
learned BN (i.e., true positives) to the number of arcs in the true BN. Fig. 9c plots the ratio
of the falsely identified arcs in the learned BN (i.e., false positives) to the number of arcs in
the true BN. Fig. 9d is similar to Fig. 9a but for Partially Directed Acyclic Graph (PDAG).
Given a BN (a learned one or true one), the corresponding PDAG can be obtained by the
method proposed in [13]. A PDAG is a collection of statistically equivalent BN structures,
i.e., these structures all represent the same set of dependent and independent relationships so
they are statistically indistinguishable. The PDAG of a BN can be constructed by replacing a
directed arc between Xi and Xj in the BN with an undirected one, if some statistically
equivalent BN structures have Xi → Xj and others have Xi ← Xj. A PDAG is very useful
when making a causal interpretation, i.e., we may interpret the directed arcs in the PDAG as
representing the direction of direct causal influence. Figs. 9a, 9b, 9c, 9d show that SBN
performs much better than all the competing algorithms in BN- and PDAG-identification.

Furthermore, we would like to compare SBN with the competing algorithms under small
sample sizes. We decrease the sample size to 100 and repeat the above procedure. The
results are shown in Figs. 10a, 10b, 10c, 10d. It can be seen that SBN still performs much
better than all the competing algorithms in BN- and PDAG-identification even for small
sample sizes.

5.4 Scalability
We study two aspects of scalability for SBN: the scalability with respect to the number of
variables in a BN, p, and the scalability with respect to the sample size, n. We use the CPU
time for each sweep through all the columns of B as the parameter for measurement.
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Specifically, we fix n = 1,000, and vary p by using the 11 benchmark networks. Also, we fix
p = 37 (the Alarm network). The results over 100 repetitions are shown in Figs. 11a and 11b,
respectively. It can be seen that the times are linear in n and quadratic in p, which confirms
our theoretical time complexity analysis in Section 3.

5.5 Efficiency
We further compare the CPU time of SBN with other competing algorithms in structure
learning of the 11 benchmark networks. In particular, the CPU time of SBN is the time it
takes the algorithm in Fig. 2 to converge for given regularization parameters and initial
value. The CPU times of other competing algorithms are recorded in a similar way. The
results of 100 repetitions are shown in Table 2 (the two large networks, Alarm 2 and
Haifinder 2) and Fig. 12 (the other networks). It can be seen that SBN is the fastest
algorithm in structure learning of all the benchmark networks. This is expected since the
fastest algorithms among the 10 competing algorithms, i.e., GS and TC, have a time
complexity O(p3n), while SBN only costs O(p2n) (i.e., each sweep of SBN costs O(p2n) and
our simulation study shows that SBN usually takes no more than five sweeps to converge).

Note that the CPU times being compared here do not include the time of initialization and
selection of parameters that need to be preset for each algorithm. Inclusion of this time is
obviously more desirable for a comprehensive assessment of each algorithm’s efficiency.
This, on the other hand, is quite difficult because different algorithms have different initial
values and parameters to be preset and there are many different ways to set them. Also, how
to set them depends on the requirement for learning accuracy. We leave such a
comprehensive assessment and comparison for future study and acknowledge the limitation
of the current study.

6 Brain Connectivity Modeling of AD by SBN
FDG-PET images of 49 AD and 67 matching normal control subjects are downloaded from
the Alzheimer’s Disease Neuroimaging Initiative website (www.loni.ucla.edu/ADNI).
Demographic information and MMSE scores of the subjects are given in Table 3. The ADNI
was launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging andBioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies, and nonprofit organizations as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD.

We apply Automated Anatomical Labeling [52] to segment each image into 116 anatomical
volumes of interest (AVOIs) and then select 42 AVOIs that are considered to be potentially
relevant to AD based on the literature. Each AVOI becomes a region/variable/node in SBN.
Please see Table 4 for the name of each AVOI brain region. These regions distributed in the
four lobes of the brain, i.e., the frontal, parietal, occipital, and temporal lobes. The
measurement data of each region, according to the mechanism of FDG-PET, is the regional
average FDG binding counts, representing the degree of glucose metabolism.

We apply SBN to learn a BN for AD and another one for NC to represent their respective
brain connectivity models. Note that because BNs are directed graphical models, a
connectivity model learned by SBN reveals the directional effects of one brain region over
another—called the effective connectivity of the brain [59]. Effective connectivity has been
much less studied in the AD literature, while most existing work focuses on the functional
connectivity, i.e., the correlations among brain regions. Studies on effective connectivity can
greatly complement the existing functional connectivity studies by providing insight into
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how the correlations are mediated, which may further lead to an understanding of the
mechanism underlying the communication among distinct brain regions. In this sense, SBN
has the advantage over undirected graphical models of discovering new knowledge about
AD.

In the learning of an AD (or NC) effective connectivity model, the value for λ1 needs to be
selected. In this paper, we adopt two criteria in selecting λ1: One is to minimize the
prediction error of the model and the other is to minimize the BIC. Both criteria have been
popularly adopted in sparse learning [20], [21], [22], [37]. The two criteria lead to similar
findings from the effective connectivity models, so only the results based on the minimum
prediction error are shown in this section and the results based on BIC are included in the
supplemental material, which is available online. For a given λ1 value, the prediction error
of the corresponding BN is computed as follows: First, a regression is fit for each node using
the parents as predictors, and the regression coefficients are estimated by MLE. Then, the
mean square error between the true and predicted values of each node is computed based on
leave-one-out cross validation. Finally, the mean square errors of all the nodes are summed
to represent the prediction error of the BN. The λ1 value that leads to the minimum
prediction error is selected; with this λ1, SBN is applied to learn a BN brain connectivity
model. Fig. 13 shows the connectivity models for AD and NC. Each model is represented by
a “matrix.” Each row/column is one AVOI, Xj. A black cell at the ith row and jth column of
the matrix represents that Xi is a parent of Xj. On each matrix, four red cubes are used to
highlight the four lobes, i.e., the frontal, parietal, occipital, and temporal lobes, from top-left
to bottom-right. The black cells inside each red cube reflect intralobe effective connectivity,
whereas the black cells outside the cubes reflect interlobe effective connectivity.

The following interesting observations can be drawn from the connectivity models.

6.1 Global-Scale Effective Connectivity
The total number of arcs in a BN connectivity model— equal to the number of black cells in
a matrix plot in Fig. 13—represents the amount of effective connectivity (i.e., the amount of
directional information flow) in the whole brain. This number is 285 and 329 for AD and
NC, respectively. In other words, AD has 13.4 percent less amount of effective connectivity
than NC. Loss of connectivity in AD has been widely reported in the literature [60], [68],
[69], [70].

6.2 Intra/Interlobe Effective Connectivity Distribution
Aside from having different amounts of effective connectivity at the global scale, AD may
also have a different distribution pattern of connectivity across the brain from NC.
Therefore, we count the number of arcs in each of the four lobes and between each pair of
lobes in the AD and NC effective connectivity models. The results are summarized in Table
5. It can be seen that the temporal lobe of AD has 22.9 percent less amount of effective
connectivity than NC. The decrease in connectivity in the temporal lobe of AD has been
extensively reported in the literature [53], [54], [55]. The interpretation may be that AD is
featured by dramatic cognitive decline and the temporal lobe is responsible for delivering
memory and other cognitive functions. As a result, the temporal lobe is affected early and
severely by AD, and the connectivity network in this lobe is severely disrupted. On the other
hand, the frontal lobe of AD has 27.6 percent more amount of connectivity than NC. This
observation has been interpreted as compensatory reallocation or recruitment of cognitive
resources [56], [53], [57]. Because the regions in the frontal lobe are typically affected later
in the course of AD (our data uses mild to moderate AD), the increased connectivity in the
frontal lobe may help preserve some cognitive functions in AD patients. In addition, AD
shows a decrease in the amount of connectivity in the parietal lobe, which has also been
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reported to be affected by AD. There is no significant difference between AD and NC in the
occipital lobe. This observation is reasonable because the occipital lobe is primarily
involved in the brain’s visual function, which is not affected by AD.

In addition to generating the connectivity models of AD and NC based on the minimum
prediction error and minimum BIC criteria, we also generate the connectivity models by
making the total numbers of arcs the same for AD and NC. We choose to do this to factor
out the connectivity difference between AD and NC that is due to the difference at the
global scale so that the remaining difference will reflect their difference in connectivity
distribution. Specifically, the connectivity models with the total number of arcs equal to 120,
80, and 60 are generated (see the supplemental material, which is available online), which
show similar intra and interlobe effective connectivity distribution patterns to those
discussed previously.

6.3 Direction of Local Effective Connectivity
As mentioned previously, one advantage of BNs over undirected graphical models in brain
connectivity modeling is that the directed arcs in a BN reflect the directional effect of one
region over another, i.e., the effective connectivity. Specifically, if there is a directed arc
from brain regions Xi to Xj, it indicates that Xi takes a dominant role in the communication
with Xj. The connectivity modes in Fig. 13 reveal a number of interesting findings in this
regard.

1. There are substantially fewer black cells in the area defined by rows 27-42 and
columns 1-26 in AD than NC. Recall that rows 27-42 correspond to regions in the
temporal lobe. Thus, this pattern indicates a substantial reduction in arcs pointing
from temporal regions to the other regions in the AD brain, i.e., temporal regions
lose their dominating roles in communicating information with the other regions as
a result of AD. The loss is the most severe in the communication from the temporal
to frontal regions.

2. Rows 31 and 35, corresponding to brain regions “Temporal_Mid_L” and
“Temporal_Inf_L”, respectively, are among the rows with the largest number black
cells in NC, i.e., these two regions take a significantly dominant role in
communicating with other regions in normal brains. However, the dominancy of
the two regions is substantially reduced by 34.8 and 36.8 percent, respectively, in
AD. A possible interpretation is that these are neocortical regions associated with
amyloid deposition and early FDG hypometabolism in AD [60], [61], [62], [63],
[64], [65].

3. Columns 39 and 40 correspond to regions “Hippo-campus_L” and
“Hippocampus_R,” respectively. There are a total of 33 black cells in these two
columns in NC, i.e., 33 other regions dominantly communicate information with
the hippocampus. However, this number reduces to 22 (33.3 percent reduction) in
AD. The reduction is more severe in Hippocampus_L—actually a 50 percent
reduction. The hippocampus is well known to play a prominent role in making new
memories and recalling. It has been widely reported that the hippocampus is
affected early in the course of AD, leading to memory loss—the most common
symptom of AD.

4. There are a total of 93 arcs pointing from the left to the right hemispheres of the
brain in NC; this number reduces to 71 (23.7 percent reduction) in AD. The number
of arcs from the right to the left hemispheres in AD is close to that in NC. This
provides evidence that AD may be associated with interhemispheric disconnection
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and the disconnection is mostly unilateral, which has also been reported by some
other papers [66], [67].

Finally, we would like to point out that although using BNs to infer effective connectivity is
common in the AD literature, it would be more appropriate to study effective connectivity
based on PDAGs due to the statistical equivalence of BNs. Therefore, we derive the PDAGs
for the DAGs in Fig. 13 (see Fig. S-3 in the supplemental material, which is available
online), which turn out to be very similar to the DAGs. We also verify that all the above
findings hold based on the PDAGs.

7 Conclusion
In this paper, we proposed a BN structure learning algorithm, SBN, for learning large-scale
BN structures from high-dimensional data. SBN adopted a novel formulation that involves
one L1-norm penalty term to impose sparsity on the learning and another penalty to ensure
the learned BN to be a DAG. We studied the theoretical property of the formulation and
identified a finite value for the regularization parameter of the second penalty; this value
ensures that the learned BN is a DAG. Under this formulation, we further proposed use of
the BCD and shooting algorithms to estimate the BN structure.

Our theoretical analysis on the time complexity of SBN showed that it is linear in the sample
size and quadratic in the number of variables. This makes SBN more scalable and efficient
than most existing algorithms, and thus makes it well suited for large-scale BN structure
learning from high-dimensional datasets. In addition, we performed theoretical analysis on
the competitive advantage of SBN over the existing algorithms in terms of learning
accuracy. Our analysis showed that the existing algorithms employ a two-stage approach in
BN structure identification, and thus having a high risk of misidentifying parents of each
variable, whereas SBN does not suffer from this problem.

Our experiments on 11 moderate to large benchmark networks showed that SBN
outperforms 10 competing algorithms in all metrics defined for measuring the learning
accuracy and under various sample sizes. Also, SBN outperforms the 10 competing
algorithms in scalability and efficiency.

We applied SBN to identify the effective brain connectivity model of AD from
neuroimaging PDG-PET data. Compared with a brain connectivity model of NC, we found
that AD had significantly reduced amounts of effective connectivity in key pathological
regions. This is consistent with known pathology and the clinical progression in AD.
Clinically, our findings may be useful for monitoring disease progress, evaluating treatment
effects (both symptomatic and disease modifying), and enabling early detection of network
disconnection in prodromal AD.

In future work, we will investigate how to measure statistical significance of the DAG
identified by our algorithm. Potential methods include bootstrap [71], permutation tests [72],
and stability selection [73]. This study is also important from the medical point of view as it
will help verify the significance of the identified brain connectivity loss based on the DAG.
Also, although this paper focuses on structure learning of Gaussian BNs, the same
formulation may be adopted for discrete BNs, which will be interesting to explore. In
addition, we will investigate the behavior of SBN on Markov equivalent class. Our empirical
observation has shown that the objective function of SBN is not Markov equivalent, i.e.,
SBN attributes different scores to BNs that are Markov equivalent. More in-depth theoretical
analysis will be performed in future research.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
A Bayesian network structure (DAG).
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Fig. 2.
The BCD algorithm used for solving (2).
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Fig. 3.
The shooting algorithm used for solving (3).
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Fig. 4.
A general tree.
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Fig. 5.
A general inverse tree.
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Fig. 6.
(a) General tree used in the simulation study in Section 5.1; (b) general inverse tree used in
the simulation study in Section 5.2 (regression coefficients of arcs generated from
±Uniform(0.5, 1)).
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Fig. 7.
(a) Frequency of X1 being identified as a parent of Xi, i = 2, …, 7; (b) ratio of number of
correctly identified arcs in learned BN to number of arcs in true BN; (c) ratio of total
learning error in learned BN (false positives plus false negatives) to number of arcs in true
BN.
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Fig. 8.
(a) Frequency of Xi being identified as parents of their respective child in true BN, i = 1, …,
30; (b) ratio of number of correctly identified arcs in learned BN to number of arcs in true
BN; (c) ratio of total learning error in learned BN (false positives plus false negatives) to
number of arcs in true BN
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Fig. 9.
(a) Ratio of total learning error in the learned BN (false positives plus false negatives) to the
number of arcs in the true BN for the 10 competing algorithms and SBN on 11 benchmark
networks; (b) ratio of correctly identified arcs in the learned BN (i.e., true positives) to the
number of arcs in the true BN; (c) ratio of falsely identified arcs in the learned BN (i.e., false
positives) to the number of arcs in the true BN; (d) ratio of the total learning error in the
learned PDAG to the number of arcs in the true PDAG. The learned BN and PDAG in (a)-
(d) are based on a simulation dataset of sample size 1,000. Dots are means and error bars are
standard deviations.
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Fig. 10.
(a) Ratio of total learning error in the learned BN (false positives plus false negatives) to the
number of arcs in the true BN for the 10 competing algorithms and SBN on 11 benchmark
networks; (b) ratio of correctly identified arcs in the learned BN (i.e., true positives) to the
number of arcs in the true BN; (c) ratio of falsely identified arcs in the learned BN (i.e., false
positives) to the number of arcs in the true BN; (d) ratio of the total learning error in the
learned PDAG to the number of arcs in the true PDAG. The learned BN and PDAG in (a)-
(d) are based on a simulation dataset of sample size 100. Dots are means and error bars are
standard deviations.
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Fig. 11.
Scalability of SBN with respect to (a) the number of variables, p, (b) the sample size, n.
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Fig. 12.
Comparison of SBN with competing algorithms on CPU time in structure learning. Y -axis is
the CPU time for each sweep through all the columns of B on a computer with Intel Core 2,
2.2 GHz, 4 GB memory. The X-axis is the first nine networks in Table 1.
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Fig. 13.
Brain effective connectivity models by SBN. (a) AD; (b) NC.
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TABLE 1

Benchmark Networks

Networks
Number of

nodes
Number
of arcs

1 Factor 27 68

2 Alarm (BNR) 37 46

3 Barley (BNR) 48 84

4 Carpo (BNR) 61 74

5 Chain 7 6

6 Hailfinder (BNR) 56 66

7 Insurance (BNR) 27 52

8 Mildew (BNR) 35 46

9 Water (BNR) 32 66

10 Alarm 2 296 410

11 Haifinder 2 280 390
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TABLE 2

Comparison of SBN with Competing Algorithms on the CPU Time in Structure Learning of Two Large
Networks (Standard Derivation Is Shown in the Bracket)

Algorithms Alarm 2 Haifinder 2

SBN 67.1 (13.4) 78.8 (19.5)

SC 958 (73.6) 987 (83.2)

L1MB-DAG 11715 (1034.8) 13521 (2543.3)

GS 1071 (142.4) 1204 (98.5)

TC-bw 35981 (2578.3) 41214 (5435.3)

TC 445 (89.3) 496 (67.9)

HITON 10324 (3390.7) 13913 (2482.1)

IAMB 6423 (894.1) 8060 (1427.4)

IAMBI 6416 (987.6) 8148 (1075.6)

IAMB2 6411 (1293.2) 7994 (919.1)

IAMB3 6415 (1508) 7998 (1793.7)
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TABLE 3

Demographic Information and MMSE

NC AD P-VALUE

Age (mean ± SD) 76.0±4.69 75.3±6.85 0.53

Gender (Male/Female) 43/24 27/22 0.77

Years of education (mean ± SD) 15.9±3.24 14.7±3.02 0.01

Baseline MMSE 29.0±1.18 23.6±1.93 <0.001
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TABLE 4

Names of the AVOI for Brain Connectivity Modeling (L = Left Hemisphere, R = Right Hemisphere)

Frontal lobe Parietal lobe Occipital lobe Temporal lobe

1 Front al_Sup_L 13 Parietal_Sup_L 21 Occipital_Sup_L 27 Temporal_Sup_L

2 Frontal_Sup_R 14 Parietal_Sup_R 22 Occipital_Sup_R 28 Temporal_Sup_R

3 Frontal_Mid_L 15 Parietal_Inf_L 23 Occipital_Mid_L 29 Temporal_Pole_Sup_L

4 Frontal_Mid_R 16 Parietal_Inf_R 24 Occipit al_Mid_R 30 Temporal_Pole_Sup_R

5 Frontal_Sup_Medial_L 17 Precuneus_L 25 Occipital_Inf_L 31 Temporal_Mid_L

6 Frontal_Sup_Medial_R 18 Precuneus_R 26 Occipital_Inf_R 32 Temporal_Mid_R

7 Frontal_Mid_Orb_L 19 Cingqlum_Post_L 33 Temporal_Pole_Mid_L

8 Frontal_Mid_Orb_R 20 Cingqlum_Post_R 34 Temporal_Pole_Mid_R

9 Rectus_L 35 Temporal_Inf_L 8301

10 Rectus_R 36 Temporal_Inf_R 8302

11 Cingulum_Ant_L 37 Fusiform_L

12 Cingulum_Ant_R 38 Fusiform_R

39 Hippocampus_L

40 Hippocampus_R

41 ParaHippocampal_L

42 ParaHippocampal_R
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TABLE 5

Intra and Interlobe Effective Connectivity Amounts

(A) AD

Frontal Parietal Occipital Temporal

Frontal 37 28 18 43

Parietal 16 14 42

Occipital 10 23

Temporal 54

(B) NC

Frontal Parietal Occipital Temporal

Frontal 29 32 12 61

Parietal 20 16 42

Occipital 11 36

Temporal 70
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